DOLEP LOCK ASSEMBLY TUTORIAL #3
Hello to all again,
I hope you’re ready for a long one.
I’m going to cover preparation and installation of the tumbler and bridle in this entry. Before that, however, there’s one more thing I should have covered previously in the frizzen tutorial:
Even after clamping and epoxying the frizzen in place during installation, you’re likely to get some gaps between the pan cover and pan. Check this, roughly, by holding the closed pan cover and lock plate up to a light to see where it needs work. If you can see no light, you’re good, but the epoxy bond doesn’t allow for perfect contact. After cleaning off the epoxy residue from both parts, which you can do with a scraper and acetone, you can identify the points of contact and non-contact using some sort of transfer color applied to the joining surfaces. You could use inletting black, which makes a huge mess, traditional smoke from an alcohol lamp (charming and authentic, but too tedious for my taste), or even lipstick. In this picture I am using Dykem mechanic’s blue, a fairly quick-drying liquid applied from a screw top can. It cleans up quickly with acetone. I applied a coat onto the upper edges of the pan, and closed the frizzen before it dried. I then used a fine pillar file to gently take the high spots down on both the pan and frizzen, repeating until the gaps went away.
MOVING ON TO THE TUMBLER AND BRIDLE:
The tumbler is the beating heart of the lock, and it’s critical to get it finished and installed square and clean in relation to the plate and bridle. The tumbler casting in this set, right out of the package, has long extensions added to the inner and outer axle shafts, which make this part much easier to handle and machine than trying to use the stubby original length shafts, but unfortunately these extensions are not totally true and square, a bit lumpy, and slightly off axis to one another. You can place one of these shafts in a vise and gently, by eyeball, cold bend the other until shaft until it appears straight. You could also chuck one or both shafts in a drill press or drill, and gently marking the spinning surface with an ink marker or file, identify where the high spots are. The tumbler will then need to be finished up on a lathe.
The large outer shaft will be placed through a reamed hole in the lock plate measuring 9/32” diameter, and the small inner shaft with go through a reamed hole in the bridle measuring 3/16”. Turn each shaft down on the lathe to just smaller than these dimensions, respectively. At this point, a little too tight is better than too loose, since the shafts will be further polished later. A metal diameter index plate is useful to test the diameters as you get close to finishing the lathe work.
The inner and outer surfaces of the main part of the tumbler can be carefully faced off on the lathe to keep them perpendicular to the shafts. The other various surfaces of the tumbler can be dressed with files.
At this point, the sites of the holes for the bridle and tumbler need to be established. As I posted last time, the most clearly visible landmark for a screw placement on the plate is the sear screw, lying just behind the cock. The little half-circle of decorative engraving on the outer surface of the lock is your target. Mark this with a center punch right in the middle. Then place the plate face up in your drilling block, clamp, and drill clear through the lock with a #29 drill bit (to accommodate later tapping with a 10-32 tap). Note that I’m starting this hole with an undersized center drill before going on to the full sized bit. I used the center drill to start just about all holes to keep the final drilling accurate.
The next major hole site you need to identify is for the tumbler shaft. On the outside of the lock casting you can see the general shape and location of the plugged tumbler hole, but it’s far from precise. What I’m going to do is find where this hole needs to go from the back side of the lock and drill right through the plate and cock at the same time.
The position of the cock is critical for function. Similar to the frizzen, I fixed it to the lock plate with epoxy before doing any drilling. The cock should be positioned with the flat stop on the inside edge of the cock resting firmly against the top surface of the lock plate, flat surfaces flush against each other. Based on pictures of the original lock, the tip of the lower jaw should lie just about a millimeter or slightly more above and in front of the top edge of the pan fence. These two landmarks should get you close, but also check the outside surface of the plate to make sure the back edge of the cock lines up close to the edge of the raised flat plate surface under the cock. (The upper front part of this flat area won’t match the edge of the cock except at half-cock position.)
After mixing your epoxy, apply it generously between the cock and lock plate. You have a few minutes to tweak the cock to final position, as described above, before applying a clamp or vise grip. Check it again after clamp placement to make sure nothing slipped, then let cure overnight.
After curing the epoxy, the tumbler hole site is identified and punched. According to Tom Snyder’s plan, this hole should be centered 0.497” in front of the center of the sear screw. He doesn’t specify position from top to bottom, but the hole appears centered slightly above the midportion of the plate, centered about 0.450” above the lower edge of the plate and about 0.400” below the top edge, by my measurements.
The tumbler pilot hole is then drilled from the inside of the plate all the way through the cock. Drill size isn’t critical here, it just needs to be a small hole perpendicular to the plate. It may be a little difficult to stabilize the plate for drilling with the cock glued on the outside, so use the front flat end of the plate for alignment and clamping and square up the drill bit with the plate before gently drilling through.
After separating the epoxied plate and cock (the accidental fall on the concrete floor technique could be applied here), it looks like the tumbler pilot hole is pretty much right in the middle of the round casting mark of the plugged hole.
Now we can go on to prepping and attaching the bridle. We’re not going to ream out the holes for the tumbler shafts until the bridle is in place, then we’ll do both holes together at one go to keep everything square.
We’re ready to start drilling holes for the bridle at this point. The bridle can be cleaned up a bit with files. The surface where the bridle contacts the plate needs to be cleaned up and squared a bit more meticulously.
Note that there are two fixation posts on the bridle, meant to enter the lock plate. The upper one is a nice thick round post, the lower a little rectangular nub. Tom Snyder stated in his assembly notes, “Unless you are a masochist, file off the alignment stud on the bridle as well as the little tit on the bottom leg of the bridle. . .they make it much, much harder to position the bridle correctly and aren’t structurally necessary”. I don’t totally agree. I did file off the little rectangular tit, but left the round upper stud intact. I found having this stud in place helped stabilize the bridle position while drilling the other holes. I’d recommend using it.
The stud hole, by my measurement, lies 0.730” back from the most posterior curved edge of the bolster, and 0.080” down from the upper edge of the lock. You can drill this hole with about a 7/64” or #38 drill bit all the way through the plate, coming from the inside. It will come out underneath the cock and won’t show.
With this hole established, and the bridle post placed in it, the flat surfaces of the bridle that contact the plate should be filed off until everything sits nice and flat on the plate. Then you can move on to drilling the rest of the bridle holes.
Here, the position of the sear screw hole is marked on the surface of the bridle with a pointed drill bit placed against the bridle while rotating the bridle on the stud. The resulting curved scribe line shows where the hole needs to be drilled, midway between the upper and lower margins of the bridle arm. Center punch and drill this hole with the broad face of the bridle down. An 8/32” screw goes through this, so drill a clearance hole using a #16 drill bit.
The final hole in the bridle, before going on to the tumbler hole, is at the upper front edge of the tumbler, very close to the edge of the plate. At this point, you could tap the 8-32” sear screw hole into the plate to fix the bridle into more stable position with the sear screw. With the bridle in position, the front bridle screw can be drilled through the bridle and plate. This screw is a 5-40, and should be drilled with a #38 drill bit. A clearance hole can then be drilled through just the bridle (not the plate) with a #29 bit. Tap the hole in the plate with a 5-40 tap.
(On the original lock, the front bridle screw was a blind screw not passing through the plate. You could mount it either as a blind screw or through-and-through screw, but there is not very much metal in the plate at this site. I ended up drilling and tapping it all the way through for strength, but the screw does show somewhat on the outer surface of the lock. Your call on what you feel comfortable with. )
The top of the bridle lies very close to upper edge of the lock and may actually rise above the edge slightly. I ended up filing off a bit of the upper surface of the bridle and also reducing the diameter of the front bridle screw head to provide clearance for inletting the lock.
With the bridle screwed into position on the plate, we’re ready to drill and ream the tumbler shafts. As described in my previous posts, at this point I drilled out a recess in my wood drilling support block using spade bits and chisels to accommodate the installed bridle. The plate is clamped face up in the drilling block, and an 11/64” bit is passed from the tumbler pilot hole in the plate all the way through the bridle. This bit is the recommended size for starting the 3/16” reamer you will use for the final tumbler hole in the bridle. (You could start out with a smaller sized bit first and work your way up.)
The tumbler hole in the plate (but not the bridle) is then drilled with a 17/64” bit, followed by a 9/32” reamer, both drilled in the drill press. The smaller 3/16” reamer can then be passed through this hole to make the inner tumbler hole in the bridle. With any luck, this hole in the bridle will be surrounded all the way around by metal! (Mine was, though the margins are slim!)
You can now assemble the tumbler, plate, and bridle, screw it all together, and make sure everything lines up and turns freely.
The final fixture in this part of the lock is the sear screw and sear spring. The hole for the sear screw lies pretty far forward, actually lying within a cutout in the tumbler. This one is a bear. It is a small blind screw, 4-40 in size, lying very close to the upper edge of the plate. The hole is very shallow. I drilled it with #43 tapered and bottoming drill bits, being careful to set my drill press stop short of penetrating the outer surface of the plate.
When tapping this little blind hole I had my first fairly bad mishap when the tap broke off in the hole. Unable to extract the tap, I had do drill a separate hole clear through the plate just in front of the broken tap. I was able to get the bits of broken tap out through this hole, which fortunately lies just below the surface of the cock and doesn’t show. I filled up this hole by cutting a short piece steel nail and filling it to fit to make a tight plug. I then tinned the plug with solder, fluxed the hole, and peened the plug tightly into the hole with a hammer. I then heated up the plate and plug with a torch until I could see the solder rise to the surface. I then filed off the repair flush with the plate and redrilled the blind hole. (I didn’t use my best and brightest file to do this cleanup since the solder will clog a file.) All went well on the second attempt, blind hole drilled and tapped without further mishap.
The sear spring can be cleaned up now, filing the contact surface of the spring with the plate flat and square. The sear spring has a protruding rectangular stud on its upper arm on this surface (don’t file this off!) and you will need to cut a little slot in the lock plate to accommodate this stud.
This spring lies very close to the upper edge of the plate, especially at its rear end, so extreme care must be taken not to mount the spring protruding over the top of the plate. After fixing the spring with sear spring screw loosely, to allow the spring to rotate on the screw, I marked the position of the spring stud on the surface of the lock plate with a sharp scriber, above and below the edge of the spring, making sure nothing was sticking beyond the edge of the plate. I then used a heavy graver and chasing hammer to make a notch between these lines in the plate. Several passes of the graver were made until the retention stud fit firmly and deeply in my notch, allowing the surface of the spring to lie firmly against the plate.
The sear pivot hole can now be drilled. The position of this hole can be seen pretty clearly on the casting. Spot and drill this hole with a #16 drill bit, to clear the 8-32 sear screw.
You can tap the sear screw hole at this time, if you haven’t done it already, to 8-32. Tapping through the sear hole in the fixed bridle may help you keep the tap straight.
Now you can remove the bridle and check out the position of the tumbler relative to the sear. The tumbler notches and sear nose will need some further refinement for smooth function. But that’s a topic for a later installment!
Happy trails until next time,
Gregg